PennyLane
Install
Install
  1. Compilation/
  2. Pauli Product Rotations

Pauli Product Rotations

OverviewParametrized gatesStatic gates

Static gates

We list typical static gates with their PPR decomposition and cost. For the cost, we count Clifford angles (\frac{\pi}{4} (2k+1) for k \in \mathbb{Z}) and non-Clifford angles with T corresponding to odd multiples of \frac{\pi}{8} and \sqrt{T} to odd multiples of \frac{\pi}{16} and so on.

OperatorPPRcost
Se^{i \frac{\pi}{4}} e^{-i \frac{\pi}{4} Z}1
Te^{i \frac{\pi}{8}} e^{-i \frac{\pi}{8} Z}1T
Hadamarde^{i \frac{\pi}{2}} e^{-i \frac{\pi}{4} Z} e^{-i \frac{\pi}{4} X} e^{-i \frac{\pi}{4} Z}3
SXe^{i \frac{\pi}{8}} e^{-i \frac{\pi}{8} X}1T
CNOTe^{i \frac{\pi}{4}} e^{-i \frac{\pi}{4} ZX} e^{i \frac{\pi}{4} ZI} e^{i \frac{\pi}{4} IX}3
CZe^{i \frac{\pi}{4}} e^{-i \frac{\pi}{4} ZZ} e^{i \frac{\pi}{4} ZI} e^{i \frac{\pi}{4} IZ}3
CYe^{-i \frac{\pi}{4}} e^{i \frac{\pi}{4} YY} e^{i \frac{\pi}{4} YI} e^{i \frac{\pi}{4} IY}3
CHe^{-i \frac{\pi}{8} IY} \ \text{CZ} \ e^{i \frac{\pi}{8} IY}2T + 3
SWAPe^{i \frac{\pi}{4}} e^{-i \frac{\pi}{4} ZZ} e^{-i \frac{\pi}{4} XX} e^{-i \frac{\pi}{4} YY}3
ISWAPe^{i \frac{\pi}{4} XX} e^{i \frac{\pi}{4} YY}2
SISWAPe^{i \frac{\pi}{8}XX} e^{i \frac{\pi}{8}YY}2T
CSWAPe^{i \frac{\pi}{8}} e^{-i \frac{\pi}{8} ZII} e^{-i \frac{\pi}{8} IXX} e^{-i \frac{\pi}{8} IYY} e^{-i \frac{\pi}{8} IZZ} e^{i \frac{\pi}{8} ZXX} e^{i \frac{\pi}{8} ZYY} e^{i \frac{\pi}{8} ZZZ} 7T
Toffolie^{i \frac{\pi}{8}} e^{-i \frac{\pi}{8} Z_0}e^{-i \frac{\pi}{8} Z_1}e^{-i \frac{\pi}{8} X_2} e^{-i \frac{\pi}{8} ZZX} e^{i \frac{\pi}{8} IZX}e^{i \frac{\pi}{8} ZIX} e^{i \frac{\pi}{8} ZZI}7T

MultiControlledX

The MultiControlledX gate is decomposed into PPRs using all operators from \{Z_0, I_0\}\otimes\{Z_1, I\} \otimes \cdots \{Z_{n-2}, I\}\otimes \{X_{n-1}, I\} for n qubits and n-1 controls. Terms with odd number of Paulis have a minus in front of the phase \frac{\pi}{2^{n}}. For example, for n=4 we have the following:

e^{i \frac{\pi}{16}} e^{-i \frac{\pi}{16}Z_0} e^{-i \frac{\pi}{16}Z_1} e^{-i \frac{\pi}{16}Z_2} e^{-i \frac{\pi}{16}X_3} e^{i \frac{\pi}{16} (ZIIX+ IZIX+ IIZX+ZZII+IZZX)} \\ e^{-i \frac{\pi}{16} (ZZIX + ZIZX + IZZX + ZZZI)} e^{i \frac{\pi}{16} ZZZX}.

Note how we sorted the generators by their Pauli weight (i.e., the number of non-trivial Pauli operators in the Pauli word). This is just for better readability. Because all generators commute, we can trivially decouple all generators into individual PPRs.

PennyLane

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Built by researchers, for research. Created with ❤️ by Xanadu.

Research

  • Research
  • Performance
  • Hardware & Simulators
  • Demos
  • Quantum Compilation
  • Quantum Datasets

Education

  • Teach
  • Learn
  • Codebook
  • Coding Challenges
  • Videos
  • Glossary

Software

  • Install PennyLane
  • Features
  • Documentation
  • Catalyst Compilation Docs
  • Development Guide
  • API
  • GitHub
Stay updated with our newsletter

© Copyright 2025 | Xanadu | All rights reserved

TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.

Privacy Policy|Terms of Service|Cookie Policy|Code of Conduct